
Pysparse Documentation
Release 1.0.2

Roman Geus, Daniel Wheeler and Dominique Orban

October 06, 2010

CONTENTS

1 Introduction to Pysparse 3
1.1 Module Overview . 3
1.2 Prerequisites . 4
1.3 Installing Pysparse . 5
1.4 Testing Pysparse . 5
1.5 Generating the Documentation . 6

2 Sparse Matrix Formats 7
2.1 Linked-List Format . 7
2.2 Compressed Sparse Row Format . 8
2.3 Sparse Skyline Format . 8

3 Low-Level Sparse Matrix Types 9
3.1 The spmatrix Module . 9
3.2 Example: 2D-Poisson matrix . 16
3.3 Vectorization . 17
3.4 Matlab Implementation . 19
3.5 Comparison with Matlab . 20

4 Preconditioners 23
4.1 The precon Module . 23

5 Iterative Solvers 25
5.1 The itsolvers Module . 25

6 Direct Solvers 29
6.1 The Low-Level C Modules . 29
6.2 Higher-Level Python Interfaces . 33

7 Eigenvalue Solver 39
7.1 The jdsym Module . 39

8 Higher-Level Sparse Matrix Classes 43
8.1 The pysparseMatrix module . 43

9 Other Sparse Matrix Packages for Python 47

10 License 49

11 TODO List 51

i

12 Indices and Tables 53

Bibliography 55

Python Module Index 57

Index 59

ii

Pysparse Documentation, Release 1.0.2

Release 1.0

Date October 06, 2010

CONTENTS 1

Pysparse Documentation, Release 1.0.2

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO PYSPARSE

PySparse extends the Python interpreter by a set of sparse matrix types holding double precision values. PySparse also
includes modules that implement

• Iterative Krylov methods for solving linear systems of equations,

• Diagonal (Jacobi) and SSOR preconditioners,

• Interfaces to direct solvers for sparse linear systems of equations (SuperLU and UMFPACK),

• A Jacobi-Davidson eigenvalue solver for the symmetric, generalised matrix eigenvalue problem (JDSYM),

• Low-level C classes to represent and manipulate sparse matrices,

• High-level Python classes with operator overloading to perform usual operations on matrices.

Most of the above modules are implemented as C extension modules for maximum performance.

PySparse uses NumPy for handling dense vectors and matrices and uses SuperLU and UMFPACK for factorizing
general sparse matrices.

1.1 Module Overview

1.1.1 spmatrix

The spmatrix module is the foundation of the Pysparse package. It extends the Python interpreter by three new
types named ll_mat, csr_mat and sss_mat. These types represent sparse matrices in the LL-, the CSR- and
SSS-formats respectively (see Sparse Matrix Formats). For all three formats, double precision values (C type double)
are used to represent the nonzero entries. The common way to use the spmatrix module is to first build a matrix in
the LL-format. The LL-matrix is manipulated until it has its final shape and content. Afterwards it may be converted
to either the CSR- or SSS-format, which needs less memory and allows for fast matrix-vector multiplications. A
ll_mat object can be created from scratch, by reading data from a file (in MatrixMarket format) or as a result of matrix
operation (as e.g. a matrix-matrix multiplication). The ll_mat object supports manipulating (reading, writing, add-
updating) single entries or sub-matrices. On the other hand, csr_mat and sss_mat matrices are not constructed
directly, instead they are created by converting ll_mat objects. Once created, csr_mat and sss_mat objects
cannot be manipulated. Their purpose is to support efficient matrix-vector multiplications.

1.1.2 itsolvers

The itsolvers module provides a set of iterative methods for solving linear systems of equations. The iterative
methods are callable like ordinary Python functions. All these functions expect the same parameter list, and all function

3

http://numpy.scipy.org
http://math.nist.gov/MatrixMarket

Pysparse Documentation, Release 1.0.2

return values also follow a common standard. Any user-defined iterative solvers should also follow these conventions,
since other PySparse modules rely on them (e.g. the jdsym module).

Currently the itsolvers module contains the following iterative methods: PCG, MINRES, QMRS, BICGSTAB
and CGS.

1.1.3 precon

The precon module provides preconditioners, which can be used e.g. for the iterative methods implemented in the
itsolvers module or the JDSYM eigensolver (in the jdsym module). In the PySparse framework, any Python
object that has the following properties can be used as a preconditioner:

• a shape attribute, which returns a 2-tuple describing the dimension of the preconditioner,

• a precon method, that accepts two vectors x and y, and applies the preconditioner to x and stores the result in
y. Both x and y are double precision, rank-1 NumPy arrays of appropriate size.

The precon module currently implements m-step Jacobi and m-step SSOR preconditioners.

1.1.4 superlu

The superlu module interfaces the SuperLU library to make it usable by Python code. SuperLU is a software pack-
age written in C for the direct solution of a general linear system of equations. SuperLU computes LU-factorizations of
general non-symmetric, sparse matrices with partial pivoting. It is also applicable to rectangular systems of equations.

1.1.5 umfpack

The umfpack module interfaces the UMFPACK factorization package. UMFPACK computes the LU factorization
of a general matrix with partial pivoting. It is also applicable to rectangular systems.

The main difference between the superlu and umfpack modules resides in the way the factorization is performed
internally. SuperLU works with the concept of supernodes leading naturally to parallelism in the factorization. If
available, a custom-built SuperLU library for multi-core processors can be supplied to Pysparse in place of the default
library. Both factorization packages rely intensively on the BLAS to operate on dense sub-matrices. Provided the
BLAS library supplied to Pysparse was compiled with multi-threading, some level of parallelism will also be available
in UMFPACK. However, a rough empirical observation is that UMFPACK is often faster than SuperLU on mono-
processor machines.

1.1.6 jdsym

The jdsym module provides an implementation of the JDSYM algorithm, that is conveniently callable from Python.
The JDSYM algorithm computes solutions of large sparse symmetric (genralised or standard) eigenvalue problems.
JDSYM is an implementation of the Jacobi-Davidson method, optimized for symmetric matrices.

1.2 Prerequisites

• NumPy

• Optionally, a custom-built UMFPACK and/or SuperLU

4 Chapter 1. Introduction to Pysparse

http://crd.lbl.gov/~xiaoye/SuperLU/
http://www.cise.ufl.edu/research/sparse/umfpack
http://numpy.scipy.org

Pysparse Documentation, Release 1.0.2

1.3 Installing Pysparse

python setup.py install

1.4 Testing Pysparse

From the Test directory, testSuperLU runs a series of tests to exercise the various options of the SuperLU direct
solver:

$ python testSuperlu.py
Test RelErr Tol nnz(A) nnz(L+U) Fact Solve

poi1d-dflt 1.78e-12 2.25e-07 99999 199998 0.06 0.00

. poi1d-size 1.78e-12 2.25e-07 99999 199998 0.05 0.00

. poi1d-relx 1.78e-12 2.25e-07 99999 200758 0.06 0.00

. poi1d-trsh 1.78e-12 2.25e-07 99999 199998 0.06 0.00

. poi1d-prm0 1.44e-12 2.25e-07 99999 199998 0.04 0.00

. poi1d-prm1 1.78e-12 2.25e-07 99999 199998 0.07 0.00

. poi1d-prm2 1.78e-12 2.25e-07 99999 199998 0.06 0.00

. poi1d-prm3 1.44e-12 2.25e-07 99999 200000 0.06 0.00

. poi2d-dftl 2.55e-16 3.60e-12 119600 1952434 0.47 0.02

. poi2d-size 3.39e-16 3.60e-12 119600 1952434 0.42 0.02

. poi2d-relx 2.60e-16 3.60e-12 119600 2000252 0.48 0.02

. poi2d-trsh 2.55e-16 3.60e-12 119600 1952434 0.48 0.02

. poi2d-prm0 2.69e-15 3.60e-12 119600 16000398 5.48 0.11

. poi2d-prm1 7.00e-16 3.60e-12 119600 3506336 0.89 0.03

. poi2d-prm2 2.55e-16 3.60e-12 119600 1952434 0.47 0.02

. poi2d-prm3 2.24e-15 3.60e-12 119600 3472176 0.82 0.03

. spdgs-trsh 4.44e-16 2.22e-14 29998 39998 0.01 0.00

. spdgs-prm0 4.44e-16 2.22e-14 29998 40000 0.01 0.00

. spdgs-prm1 4.44e-16 2.22e-14 29998 40002 0.01 0.00

. spdgs-prm3 4.44e-16 2.22e-14 29998 40002 0.01 0.00

.
--
Ran 20 tests in 12.675s

OK

There is a corresponding test script for UMFPACK, testUmfpack:

$python testUmfpack.py
RelErr Tol nnz(A) nnz(L) nnz(U) Fact Solve

1.44e-12 2.25e-07 149998 99999 99999 0.13 0.01

. 1.44e-12 2.25e-07 149998 99999 99999 0.12 0.01

. 1.44e-12 2.25e-07 149998 99999 99999 0.12 0.01

. 1.44e-12 2.25e-07 149998 99999 99999 0.12 0.01

. 1.44e-12 2.25e-07 149998 99999 99999 0.12 0.01

. 1.44e-12 2.25e-07 149998 99999 99999 0.14 0.01

. 1.55e-17 3.60e-12 199200 1081911 1081911 0.54 0.03

. 1.55e-17 3.60e-12 199200 1081911 1081911 0.53 0.03

. 2.50e-17 3.60e-12 199200 1081911 1081911 0.53 0.03

. 2.50e-17 3.60e-12 199200 1081911 1081911 0.53 0.03

. 1.55e-17 3.60e-12 199200 1081911 1081911 0.53 0.03

. 1.64e-17 3.60e-12 199200 1489438 2166768 1.00 0.04

. 4.44e-16 2.22e-14 29998 19999 19999 0.03 0.00

1.3. Installing Pysparse 5

Pysparse Documentation, Release 1.0.2

. 4.44e-16 2.22e-14 29998 19999 19999 0.02 0.00

. 4.44e-16 2.22e-14 29998 19999 19999 0.02 0.00

. 4.44e-16 2.22e-14 29998 19999 19999 0.02 0.00

. 4.44e-16 2.22e-14 29998 19999 19999 0.03 0.00

. 4.44e-16 2.22e-14 29998 19999 19999 0.02 0.00

.
--
Ran 18 tests in 8.486s

1.5 Generating the Documentation

To re-generate the documentation, Sphinx version 0.5 or higher must be installed. The jsMath package must also be
installed. Edit $PYSPARSE/Doc/pysparse/source/conf.py to specify the location of jsMath.

To re-generate the html documentation,

cd $PYSPARSE/Doc/pysparse
make html

where Doc is a subdirectory of the top Pysparse directory. You can then point your browser to the file
build/index.html.

Similarly, to re-generate the pdf documentation,

cd $PYSPARSE/Doc/pysparse
make latex
cd build/latex
make all-pdf

This creates Pysparse.pdf in the current directory. Obviously, you need to have a working LaTeX distribution
installed.

6 Chapter 1. Introduction to Pysparse

http://sphinx.pocoo.org
http://www.math.union.edu/~dpvc/jsMath/users/welcome.html

CHAPTER

TWO

SPARSE MATRIX FORMATS

This section describes the sparse matrix storage schemes available in Pysparse. It also covers sparse matrix creation,
population and conversion.

• Linked-list format (LL): a convenient format for creating and populating a sparse matrix, whether symmetric or
general.

• Compressed sparse row format (CSR): a format designed to speed up matrix-vector products, but not well suited
to matrix population and manipulation.

• Sparse Skyline format (SSS): a format for symmetric matrices designed to speed up matrix-vector products, but
not well suited to matrix population and manipulation.

2.1 Linked-List Format

The linked-list format allows insertion and lookup of nonzero elements in moderate time and without having to move
too much data around. Internally, the nonzero entries of a matrix are stored row by row in a linked list. Within a given
row, column indices are sorted in ascending order.

In Pysparse, matrices in linked-list format are created by using the ll_mat class.

This format resembles a sorted version of the coordinate format but with a data structure that lends itself to fast
insertion, removal and lookup.

Typically, a new matrix should be created as an ll_mat and populated. If necessary, it can then be converted to
compressed sparse row or sparse skyline format using the to_csr() and to_sss() methods.

The data structure for a matrix in linked-list format has the following components:

val The double precision array val of length nalloc contains the non-zero entries of matrix.

col The integer array col of length nalloc contains the column indices of the non-zero entries stored in val.

link the integer array link of length nalloc stores the pointer (index) to the next non-zero entry of the same row.
A value of -1 indicates that there is no next entry.

root The integer array root of length n contains the pointers to the first entry of each row. The other entries of the
same row can be located by following the link array.

free The integer free points to the first entry of the free list, i.e. a linked list of unoccupied spots in the val and
col arrays. This list is populated when non-zero entries are removed from the matrix.

Here n is the number of rows of the matrix and nalloc is number of allocated elements in the arrays val, col and
link. Note that the number of nonzero entries stored is less than or equal to nalloc, but the val, col and link
arrays can be enlarged dynamically if necessary.

7

Pysparse Documentation, Release 1.0.2

2.2 Compressed Sparse Row Format

In CSR format, a sparse matrix is represented via three arrays:

va The double precision array va of length nnz contains the non-zero entries of the matrix, stored row by row.

ja The integer array ja of length nnz contains the column indices of the non-zero entries stored in va.

ia The integer array ia of length n + 1 contains the pointers (indices) to the beginning of each row in the arrays
va and ja. The last element of ia always has the value nnz + 1.

Here n is the number of rows of the matrix and nnz is its number of nonzero entries.

This format is particularly interesting for computing matrix-vector products. Even though the order of the entries is
not prescribed in this format, we sort the entries of each row by ascending column indices. This enables us to use more
efficient algorithms for certain operations.

2.3 Sparse Skyline Format

The SSS format is closely related to the CSR format. It is often used for sparse symmetric matrices. The diagonal is
stored in a separate (full) vector and the strict lower triangle is stored in CSR format:

va The double precision array va of length nnz contains the non-zero entries of the strict lower triangle, stored row
by row.

ja The integer array ja of length nnz contains the column indices of the non-zero entries stored in va.

ia The integer array ia of length n + 1 contains the pointers (indices) to the beginning of each row in the arrays
va and ja. The last element of ia always has the value nnz + 1.

da The double precision array da of length n stores all diagonal entries of the matrix.

Here n is the order of the matrix and nnz is the number of nonzero entries in the strict lower triangle.

We sort the entries of each row by ascending column indices, like we do with the CSR format. The SSS format
has the advantage over the CSR format, that it requires roughly half of the storage space and that the matrix-vector
multiplication can be implemented more efficiently

8 Chapter 2. Sparse Matrix Formats

CHAPTER

THREE

LOW-LEVEL SPARSE MATRIX TYPES

3.1 The spmatrix Module

The spmatrix module is the foundation of the PySparse package. It extends the Python interpreter by three new
types named ll_mat, csr_mat and sss_mat. These types represent sparse matrices in the LL-, the CSR- and SSS-
formats respectively (see Sparse Matrix Formats). For all three formats, double precision values (C type double) are
used to represent the non-zero entries.

The common way to use the spmatrix module is to first build a matrix in the LL-format. The LL-matrix is manip-
ulated until it has its final shape and content. Afterwards it may be converted to either the CSR- or SSS-format, which
needs less memory and allows for fast matrix-vector multiplications.

A ll_mat object can be created from scratch, by reading data from a file (in MatrixMarket format) or as a result of
matrix operation (as e.g.a matrix-matrix multiplication). The ll_mat object supports manipulating (reading, writing,
add-updating) single entries or sub-matrices.

csr_mat and sss_mat are not constructed directly, instead they are created by converting ll_mat objects. Once
created, csr_mat and sss_mat objects cannot be manipulated. Their purpose is to support efficient matrix-vector
multiplications.

3.1.1 spmatrix module functions

spmatrix.ll_mat(n, m, sizeHint=1000)
Creates a ll_mat object, that represents a general, all zero m× n matrix. The optional sizeHint parameter
specifies the number of non-zero entries for which space is allocated initially.

If the total number of non-zero elements of the final matrix is known (approximately), this number can be passed
as sizeHint. This will avoid costly memory reallocations.

spmatrix.ll_mat_sym(n, sizeHint=1000)
Creates a ll_mat object, that represents a symmetric, all zero n×nmatrix. The optional sizeHint parameter
specifies, how much space is initially allocated for the matrix.

spmatrix.ll_mat_from_mtx(fileName)
Creates a ll_mat object from a file named fileName, which must be in MatrixMarket Coordinate format.
Depending on the file content, either a symmetric or a general sparse matrix is generated.

spmatrix.matrixmultiply(A, B)
Computes the matrix-matrix multiplication C := AB and returns the result C as a new ll_mat object repre-
senting a general sparse matrix. The parameters A and B are expected to be objects of type ll_mat.

9

http://math.nist.gov/MatrixMarket/formats.html

Pysparse Documentation, Release 1.0.2

spmatrix.dot(A, B)
Computes the dot-product C := ATB and returns the result C as a new ll_mat object representing a general
sparse matrix. The parameters A and B are expected to be objects of type ll_mat.

3.1.2 ll_mat objects

ll_mat objects represent matrices stored in the LL format, which are described in Sparse Matrix Formats. ll_mat
objects come in two flavours: general matrices and symmetric matrices. For symmetric matrices only the non-zero
entries in the lower triangle are stored. Write operations to the strictly upper triangle are prohibited for the symmetric
format. The issym attribute of an ll_mat object can be queried to find out whether or not the symmetric storage
format is used.

The entries of a matrix can be accessed conveniently using two-dimensional array indices. In the Python language,
subscripts can be of any type (as it is customary for dictionaries). A two-dimensional index can be regarded as a
2-tuple (the brackets do not have to be written, so A[1,2] is the same as A[(1,2)]). If both tuple elements are
integers, then a single matrix element is referenced. If at least one of the tuple elements is a slice (which is also a
Python object), then a submatrix is referenced.

Subscripts have to be decoded at runtime. This task includes type checks, extraction of indices from the 2-tuple,
parsing of slice objects and index bound checks. Following Python conventions, indices start with 0 and wrap around
(so -1 is equivalent to the last index).

The following code creates an empty 5 × 5 matrix A, sets all diagonal elements to their respective row/column index
and then copies the value of A[0,0] to A[2,1]:

>>> from pysparse.sparse import spmatrix
>>> A = spmatrix.ll_mat(5, 5)
>>> for i in range(5):
... A[i,i] = i+1
>>> A[2,1] = A[0,0]
>>> print A
ll_mat(general, [5,5], [(0,0): 1, (1,1): 2, (2,1): 1,
(2,2): 3, (3,3): 4, (4,4): 5])

The Python slice notation can be used to conveniently access sub-matrices.

>>> print A[:2,:] # the first two rows
ll_mat(general, [2,5], [(0,0): 1, (1,1): 2])
>>> print A[:,2:5] # columns 2 to 4
ll_mat(general, [5,3], [(2,0): 3, (3,1): 4, (4,2): 5])
>>> print A[1:3,2:5] # submatrix from row 1 col 2 to row 2 col 4
ll_mat(general, [2,3], [(1,0): 3])

The slice operator always returns a new ll_mat object, containing a copy of the selected submatrix.

Write operations to slices are also possible:

>>> B = ll_mat(2, 2) # create 2-by-2
>>> B[0,0] = -1; B[1,1] = -1 # diagonal matrix
>>> A[:2,:2] = B # assign it to upper
>>> # diagonal block of A
>>> print A
ll_mat(general, [5,5], [(0,0): -1, (1,1): -1, (2,1): 1,
(2,2): 3, (3,3): 4, (4,4): 5])

10 Chapter 3. Low-Level Sparse Matrix Types

Pysparse Documentation, Release 1.0.2

Fancy Indexing

There is flexibility in the way submatrices of ll_mat objects can be accessed. In particular, rows and columns can be
permuted arbitrarily and submatrices need not be composed of consecutive rows or indices. Let’s look at an example.
Below, the poisson1d() function assembles a Poisson matrix. We come back to Poisson matrices later in this
section.

>>> from pysparse.sparse import poisson
>>> n = 5
>>> A = poisson.poisson1d(n)
>>> print A # Original matrix
ll_mat(general, [5,5]):
2.000000 -1.000000 -------- -------- --------

-1.000000 2.000000 -1.000000 -------- --------
-------- -1.000000 2.000000 -1.000000 --------
-------- -------- -1.000000 2.000000 -1.000000
-------- -------- -------- -1.000000 2.000000

>>> print A[n-1:1:-1,1:n-1] # Rows 2 through n-1 in reverse order,
>>> # second through one before last col
ll_mat(general, [3,3]):
-------- -------- -1.000000
-------- -1.000000 2.000000

-1.000000 2.000000 -1.000000

>>> print A[::-1,:] # Reverse row order
ll_mat(general, [5,5]):
-------- -------- -------- -1.000000 2.000000
-------- -------- -1.000000 2.000000 -1.000000
-------- -1.000000 2.000000 -1.000000 --------

-1.000000 2.000000 -1.000000 -------- --------
2.000000 -1.000000 -------- -------- --------

>>> print A[:,::-1] # Reverse col order (same as above b/c A is symmetric)
ll_mat(general, [5,5]):
-------- -------- -------- -1.000000 2.000000
-------- -------- -1.000000 2.000000 -1.000000
-------- -1.000000 2.000000 -1.000000 --------

-1.000000 2.000000 -1.000000 -------- --------
2.000000 -1.000000 -------- -------- --------

>>> print A[::-1,::-1] # Reverse row and col order (same as original matrix)
ll_mat(general, [5,5]):
2.000000 -1.000000 -------- -------- --------

-1.000000 2.000000 -1.000000 -------- --------
-------- -1.000000 2.000000 -1.000000 --------
-------- -------- -1.000000 2.000000 -1.000000
-------- -------- -------- -1.000000 2.000000

>>> print A[1:3,3:] # Rows 1 and 2, cols 3 and up
ll_mat(general, [2,2]):
-------- --------

-1.000000 --------

>>> print A[::2,::2] # Every other row and col
ll_mat(general, [3,3]):
2.000000 -------- --------
-------- 2.000000 --------

3.1. The spmatrix Module 11

Pysparse Documentation, Release 1.0.2

-------- -------- 2.000000

Keep in mind that as always with Python slices, the final index is never included. Note also that slicing always returns
a general matrix. Even though it might be symmetric, both triangles are stored. Finally, slicing should be applied to
general matrices. If applied to symmetric matrices, only a partial result is returned.

Fancy indexing can also be done with Python lists:

>>> print A[[1,4,2,0], ::2]
ll_mat(general, [4,3]):
-1.000000 -1.000000 --------
-------- -------- 2.000000
-------- 2.000000 --------
2.000000 -------- --------

>>> p = [1,4,2,0]
>>> q = [0,2,4]
>>> print A[p,q]
ll_mat(general, [4,3]):
-1.000000 -1.000000 --------
-------- -------- 2.000000
-------- 2.000000 --------
2.000000 -------- --------

or with integer Numpy arrays:

>>> idx0 = numpy.array([1,4,2,0], dtype=numpy.int)
>>> idx1 = numpy.array([0,2,4], dtype=numpy.int)
>>> print A[idx0,idx1]
ll_mat(general, [4,3]):
-1.000000 -1.000000 --------
-------- -------- 2.000000
-------- 2.000000 --------
2.000000 -------- --------

Finally, fancy indexing can be used to assign the same numerical value to a submatrix:

>>> A[:3,:3] = 7 # Assign value 7.0 to a principal submatrix
>>> print A
ll_mat(general, [5,5]):
7.000000 7.000000 7.000000 -------- --------
7.000000 7.000000 7.000000 -------- --------
7.000000 7.000000 7.000000 -1.000000 --------
-------- -------- -1.000000 2.000000 -1.000000
-------- -------- -------- -1.000000 2.000000

Notice however that although the slice [0:3] appears to amount to the list [0,1,2], the assignments A[:3,:3]=7
and A.put([7,7,7], [0,1,2], [0,1,2]) produce very different results.

Warning: For large-scale matrices, fancy indexing is most efficient when both index sets have the same type:
two Python slices or two Python lists. When the index sets have different types, index arrays are built internally
and this results in a performance hit.

ll_mat Object Attributes and Methods

class spmatrix.ll_mat
A general sparse matrix class in linked-list format which also allows the representation of symmetric matrices.
Only the lower triangle of a symmetric matrix is kept in memory for efficiency.

12 Chapter 3. Low-Level Sparse Matrix Types

Pysparse Documentation, Release 1.0.2

shape
Returns a 2-tuple containing the shape of the matrix A, i.e. the number of rows and columns.

nnz
Returns the number of non-zero entries stored in matrix A. If A is stored in symmetric format, only the
number of non-zero entries in the lower triangle (including the diagonal) are returned.

issym
Returns true (a non-zero integer) if matrix A is stored in the symmetric LL format, i.e. only the non-zero
entries in the lower triangle are stored. Returns false (zero) if matrix A is stored in the general LL format.

matvec(x, y)
Computes the sparse matrix-vector product y := Ax where x and y are double precision, rank-1 NumPy
arrays of appropriate size.

matvec_transp(x, y)
Computes the transposed sparse matrix-vector product y := AT x where x and y are double precision,
rank-1 NumPy arrays of appropriate size. For sss_mat objects matvec_transp is equivalent to
matvec.

to_csr()
This method converts a sparse matrix in linked list format to compressed sparse row format. Returns a
newly allocated csr_mat object, which results from converting matrix A.

to_sss()
This method converts a sparse matrix in linked list format to sparse skyline format. Returns a newly
allocated sss_mat object, which results from converting matrix A. This function works for ll_mat
objects in both the symmetric and the general format. If A is stored in general format, only the entries in
the lower triangle are used for the conversion. No check whether A is symmetric is performed.

export_mtx(fileName, precision=6)
Exports the matrix A to file named fileName. The matrix is stored in MatrixMarket Coordinate format.
Depending on the properties of the ll_mat object A the generated file either uses the symmetric or a
general MatrixMarket Coordinate format. The optional parameter precision specifies the number of
decimal digits that are used to express the non-zero entries in the output file.

shift(sigma, M)
Performs the daxpy operation A ← A + σM. The parameter σ is expected to be a Python Float object.
The parameter M is expected to an object of type ll_mat of compatible shape.

copy()
Returns a new ll_mat object that is a (deep) copy of the ll_mat object A. So:

>>> B = A.copy()

is equivalent to:

>>> B = A[:,:]

On the other hand:

>>> B = A.copy()

is not the same as:

>>> B = A

The latter version only returns a reference to the same object and assigns it to B. Subsequent changes to A
will therefore also be visible in B.

update_add_mask(B, ind0, ind1, mask0, mask1)
This method is provided for efficiently assembling global finite element matrices. The method adds the

3.1. The spmatrix Module 13

http://math.nist.gov/MatrixMarket/formats.html

Pysparse Documentation, Release 1.0.2

matrix B to entries of matrix A. The indices of the entries to be updated are specified by the integer arrays
ind0 and ind1. The individual updates are enabled or disabled using the mask0 and mask1 arrays.

The operation is equivalent to the following Python code:

for i in range(len(ind0)):
for j in range(len(ind1)):

if mask0[i] and mask1[j]:
A[ind0[i],ind1[j]] += B[i,j]

All five parameters are NumPy arrays. B is a rank-2 array. The four remaining parameters are rank-1
arrays. Their length corresponds to either the number of rows or the number of columns of B.

This method is not supported for ll_mat objects of symmetric type, since it would generally result in
an non-symmetric matrix. update_add_mask_sym must be used in that case. Attempting to call this
method using a ll_mat object of symmetric type will raise an exception.

update_add_mask_sym(B, ind, mask)
This method is provided for efficiently assembling symmetric global finite element matrices. The method
adds the matrix B to entries of matrix A. The indices of the entries to be updated are specified by the
integer array ind. The individual updates are enabled or disabled using the mask array.

The operation is equivalent to the following Python code:

for i in range(len(ind)):
for j in range(len(ind)):

if mask[i]:
A[ind[i],ind[j]] += B[i,j]

The three parameters are all NumPy arrays. B is a rank-2 array representing a square matrix. The two
remaining parameters are rank-1 arrays. Their length corresponds to the order of matrix B.

update_add_at(val, irow, jcol)
Add in place the elements of the vector val at the indices given by the two arrays irow and jcol. The
operation is equivalent to:

for i in range(len(val)):
A[irow[i],jcol[i]] += val[i]

generalize()
Convert ll_mat object to non-symmetric form in place.

compress()
Frees memory by reclaiming unused space in the internal data structure. Returns the number of elements
freed.

norm(p)
Returns the p-norm of a matrix, where p is a string. If p=’1’, the 1-norm is returned, if p=’inf’, the
infinity-norm is returned, and if p=’fro’, the Frobenius norm is returned.

Note: The 1 and infinity norm are not yet implemented for symmetric matrices.

keys()
Return a list of tuples (i,j) of the nonzero matrix entries.

values()
Return a list of the nonzero matrix entries as floats.

items()
Return a list of tuples (indices, value) of the nonzero entries keys and values. The indices are
themselves tuples (i,j) of row and column values.

14 Chapter 3. Low-Level Sparse Matrix Types

Pysparse Documentation, Release 1.0.2

scale(sigma)
Scale each element in the matrix by the constant sigma.

take(val, irow, jcol)
Extract elements at positions (irow[i], jcol[i]) and place them in the array val. In other words:

for i in range(len(val)): val[i] = A[irow[i],jcol[i]]

put(val, irow, jcol)
put takes the opposite tack to take. Place the values in val at positions given by irow and jcol:

for i in range(len(val)): A[irow[i],jcol[i]] = val[i]

Here, irow and jcol can be Python lists or integer Numpy arrays. If either irow or jcol is omitted,
it is replaced with [0, 1, 2, ...]. Similarly, val can be a Python list, an integer Numpy array or
a single scalar. If val is a scalar v, it has the same effect as if it were the constant list or array [v, v,
..., v].

delete_rows(mask)
Delete rows in place. If mask[i] == 0, the i-th row is deleted. This operation does not simply zero
out rows, they are removed, i.e., the resulting matrix is smaller.

delete_cols(mask)
Similar to delete_rows only with columns.

delete_rowcols(mask)
If mask[i] == 0 both the i-th row and the i-th column are deleted.

find()
Returns a triple (val,irow,jcol) of Numpy arrays containing the matrix in coordinate format. There
is a nonzero element with value val[i] in position (irow[i],jcol[i]).

3.1.3 csr_mat and sss_mat Objects

csr_mat objects represent matrices stored in the CSR format, which are described in Sparse Matrix Formats.
sss_mat objects represent matrices stored in the SSS format (c.f. Sparse Matrix Formats). The only way to create
a csr_mat or a sss_mat object is by conversion of a ll_mat object using the to_csr() or the to_sss()
method respectively. The purpose of the csr_mat and the sss_mat objects is to provide fast matrix-vector multi-
plications for sparse matrices. In addition, a matrix stored in the CSR or SSS format uses less memory than the same
matrix stored in the LL format, since the link array is not needed.

csr_mat and sss_mat objects do not support two-dimensional indices to access matrix entries or sub-matrices.
Again, their purpose is to provide fast matrix-vector multiplication.

csr_mat and sss_mat Object Attributes and Methods

class spmatrix.csr_mat
A general sparse matrix class in compressed sparse row format which also allows the representation of symmet-
ric matrices. Only the lower triangle of a symmetric matrix is kept in memory for efficiency.

class spmatrix.sss_mat
A general sparse matrix class in sparse skyline format which also allows the representation of symmetric matri-
ces. Only the lower triangle of a symmetric matrix is kept in memory for efficiency.

shape
Returns a 2-tuple containing the shape of the matrix A, i.e. the number of rows and columns.

3.1. The spmatrix Module 15

Pysparse Documentation, Release 1.0.2

nnz
Returns the number of non-zero entries stored in matrix A. If A is an sss_mat object, the non-zero
entries in the strictly upper triangle are not counted.

matvec(x, y)
Computes the sparse matrix-vector product y := Ax where x and y are double precision, rank-1 NumPy
arrays of appropriate size.

matvec_transp(x, y)
Computes the transposed sparse matrix-vector product y := AT x where x and y are double precision,
rank-1 NumPy arrays of appropriate size. For sss_mat objects matvec_transp is equivalent to
matvec.

3.2 Example: 2D-Poisson matrix

This section illustrates the use of the spmatrix module to build the well known 2D-Poisson matrix resulting from a
n× n square grid:

from pysparse.sparse import spmatrix

def poisson2d(n):
n2 = n*n
L = spmatrix.ll_mat(n2, n2, 5*n2-4*n)
for i in range(n):

for j in range(n):
k = i + n*j
L[k,k] = 4
if i > 0:

L[k,k-1] = -1
if i < n-1:

L[k,k+1] = -1
if j > 0:

L[k,k-n] = -1
if j < n-1:

L[k,k+n] = -1
return L

Using the symmetric variant of the ll_mat object, this gets even shorter:

def poisson2d_sym(n):
n2 = n*n
L = spmatrix.ll_mat_sym(n2, 3*n2-2*n)
for i in range(n):

for j in range(n):
k = i + n*j
L[k,k] = 4
if i > 0:

L[k,k-1] = -1
if j > 0:

L[k,k-n] = -1
return L

To illustrate the use of the slice notation to address sub-matrices, let’s build the 2D Poisson matrix using the diagonal
and off-diagonal blocks:

def poisson2d_sym_blk(n):
n2 = n*n

16 Chapter 3. Low-Level Sparse Matrix Types

Pysparse Documentation, Release 1.0.2

L = spmatrix.ll_mat_sym(n2, 2*n2-2*n)
I = spmatrix.ll_mat_sym(n, n)
P = spmatrix.ll_mat_sym(n, 2*n-1)
for i in range(n):

I[i,i] = -1
for i in range(n):

P[i,i] = 4
if i > 0: P[i,i-1] = -1
for i in range(0, n*n, n):

L[i:i+n,i:i+n] = P
if i > 0: L[i:i+n,i-n:i] = I

return L

3.3 Vectorization

The put method of ll_mat objects allows us to operate on entire arrays at a time. This is advantageous because the
loop over the elements of an array is performed at C level instead of in the Python script.

If you need to put the same value in many places, put lets you specify this value as a floating-point number instead
of an array, e.g.:

A.put(4.0, range(n), range(n))

is perfectly equivalent to:

A.put(4*numpy.ones(n), range(n), range(n))

Moreover, if the second index set is omitted, it defaults to range(n) where n is the appropriate matrix dimension.
So the above is again perfectly equivalent to:

A.put(4.0, range(n))

For illustration, let’s rewrite the poisson2d, poisson2d_sym and poisson2d_sym_blk constructors.

The put method can be used in poisson2d as so:

from pysparse.sparse import spmatrix
import numpy

def poisson2d_vec(n):
n2 = n*n
L = spmatrix.ll_mat(n2, n2, 5*n2-4*n)
d = numpy.arange(n2, dtype=numpy.int)
L.put(4.0, d)
L.put(-1.0, d[:-n], d[n:])
L.put(-1.0, d[n:], d[:-n])
for i in xrange(n):

di = d[i*n:(i+1)*n]
L.put(-1.0, di[1:], di[:-1])
L.put(-1.0, di[:-1], di[1:])

return L

And similarly in the symmetric version:

def poisson2d_sym_vec(n):
n2 = n*n
L = spmatrix.ll_mat_sym(n2, 3*n2-2*n)
d = numpy.arange(n2, dtype=numpy.int)

3.3. Vectorization 17

Pysparse Documentation, Release 1.0.2

L.put(4.0, d)
L.put(-1.0, d[n:], d[:-n])
for i in xrange(n):

di = d[i*n:(i+1)*n]
L.put(-1.0, di[:-1], di[1:])

return L

The time differences to construct matrices with and without vectorization can be dramatic. The following timings
were generated on a 2.4GHz Intel Core2 Duo processor:

In [1]: from pysparse.tools import poisson, poisson_vec

In [2]: %timeit -n10 -r3 L = poisson.poisson2d(100)
10 loops, best of 3: 38.2 ms per loop
In [3]: %timeit -n10 -r3 L = poisson_vec.poisson2d_vec(100)
10 loops, best of 3: 4.26 ms per loop

In [4]: %timeit -n10 -r3 L = poisson.poisson2d(300)
10 loops, best of 3: 352 ms per loop
In [5]: %timeit -n10 -r3 L = poisson_vec.poisson2d_vec(300)
10 loops, best of 3: 31.7 ms per loop

In [6]: %timeit -n10 -r3 L = poisson.poisson2d(500)
10 loops, best of 3: 980 ms per loop
In [7]: %timeit -n10 -r3 L = poisson_vec.poisson2d_vec(500)
10 loops, best of 3: 86.4 ms per loop

In [8]: %timeit -n10 -r3 L = poisson.poisson2d(1000)
10 loops, best of 3: 4.02 s per loop
In [9]: %timeit -n10 -r3 L = poisson_vec.poisson2d_vec(1000)
10 loops, best of 3: 333 ms per loop

and for the symmetric versions:

In [18]: %timeit -n10 -r3 L = poisson.poisson2d_sym(100)
10 loops, best of 3: 22.6 ms per loop
In [19]: %timeit -n10 -r3 L = poisson_vec.poisson2d_sym_vec(100)
10 loops, best of 3: 2.48 ms per loop

In [20]: %timeit -n10 -r3 L = poisson.poisson2d_sym(300)
10 loops, best of 3: 202 ms per loop
In [21]: %timeit -n10 -r3 L = poisson_vec.poisson2d_sym_vec(300)
10 loops, best of 3: 20 ms per loop

In [22]: %timeit -n10 -r3 L = poisson.poisson2d_sym(500)
10 loops, best of 3: 561 ms per loop
In [23]: %timeit -n10 -r3 L = poisson_vec.poisson2d_sym_vec(500)
10 loops, best of 3: 53.8 ms per loop

In [24]: %timeit -n10 -r3 L = poisson.poisson2d_sym(1000)
10 loops, best of 3: 2.26 s per loop
In [25]: %timeit -n10 -r3 L = poisson_vec.poisson2d_sym_vec(1000)
10 loops, best of 3: 205 ms per loop

From these numbers, it is obvious that vectorizing is crucial, especially for large matrices. The gain in terms of time
seems to be a factor of at least four or five. Note that the last system has order one million.

Finally, the block version could be written as:

18 Chapter 3. Low-Level Sparse Matrix Types

Pysparse Documentation, Release 1.0.2

def poisson2d_vec_sym_blk(n):
n2 = n*n
L = spmatrix.ll_mat_sym(n2, 3*n2-2*n)
D = spmatrix.ll_mat_sym(n, 2*n-1)
d = numpy.arange(n, dtype=numpy.int)
D.put(4.0, d)
D.put(-1.0, d[1:], d[:-1])
P = spmatrix.ll_mat_sym(n, n-1)
P.put(-1,d)
for i in xrange(n-1):

L[i*n:(i+1)*n, i*n:(i+1)*n] = D
L[(i+1)*n:(i+2)*n, i*n:(i+1)*n] = P

Last diagonal block
L[-n:,-n:] = D
return L

Here, put is sufficiently efficient that the benefit of constructing the matrix by blocks is not apparent anymore. The
slicing and block notation can nevertheless be used for clarity. It could also be implemented as a combination of find
and put, at the expense of memory consumption.

In [9]: %timeit -n10 -r3 L = poisson.poisson2d_sym_blk(1000)
10 loops, best of 3: 246 ms per loop
In [10]: %timeit -n10 -r3 L = poisson_vec.poisson2d_sym_blk_vec(1000)
10 loops, best of 3: 232 ms per loop

3.4 Matlab Implementation

Let’s compare the performance of three python codes above with the following Matlab functions:

The Matlab function poisson2d is equivalent to the Python function with the same name

function L = poisson2d(n)
L = sparse(n*n);
for i = 1:n

for j = 1:n
k = i + n*(j-1);
L(k,k) = 4;
if i > 1, L(k,k-1) = -1; end
if i < n, L(k,k+1) = -1; end
if j > 1, L(k,k-n) = -1; end
if j < n, L(k,k+n) = -1; end

end
end

The function poisson2d_blk is an adaption of the Python function poisson2d_sym_blk (except for exploiting
the symmetry, which is not directly supported in Matlab).

function L = poisson2d_blk(n)
e = ones(n,1);
P = spdiags([-e 4*e -e], [-1 0 1], n, n);
I = -speye(n);
L = sparse(n*n);
for i = 1:n:n*n

L(i:i+n-1,i:i+n-1) = P;
if i > 1, L(i:i+n-1,i-n:i-1) = I; end
if i < n*n - n, L(i:i+n-1,i+n:i+2*n-1) = I; end

end

3.4. Matlab Implementation 19

Pysparse Documentation, Release 1.0.2

The function poisson2d_kron demonstrates one of the most efficient ways to generate the 2D Poisson matrix in
Matlab.

function L = poisson2d_kron(n)
e = ones(n,1);
P = spdiags([-e 2*e -e], [-1 0 1], n, n);
L = kron(P, speye(n)) + kron(speye(n), P);

The Matlab functions above were place in a Matlab script names poisson.m which takes n as argument. It then calls
poisson2d, poisson2d_blk and poisson2d_kron successively, surrounding each call by tic and toc. The
tests were performed on a 2.4GHz Intel Core2 Duo running Matlab 7.6.0.324 (R2008a).

The results are as follows:

>> poisson(100)
poisson2d Elapsed time is 1.731940 seconds.
poisson2d_blk Elapsed time is 0.804837 seconds.
poisson2d_kron Elapsed time is 0.019118 seconds.

>> poisson(300)
poisson2d Elapsed time is 145.979044 seconds.
poisson2d_blk Elapsed time is 32.785585 seconds.
poisson2d_kron Elapsed time is 0.215165 seconds.

>> poisson(500)
poisson2d Elapsed time is 2318.512099 seconds.
poisson2d_blk Elapsed time is 292.355093 seconds.
poisson2d_kron Elapsed time is 0.627137 seconds.

>> poisson(1000)
poisson2d_kron Elapsed time is 2.317660 seconds.

It is striking to see how slow the straightforward poisson2d version is in Matlab. As we see in the next section, the
Python version is faster by several orders of magnitude.

3.5 Comparison with Matlab

First, consider the simple Poisson2D function. The table below summarizes the results of the
previous section by giving timing ratios between the Python and Matlab Poisson constructors.

Table 3.1: Matlab vs. Python: Construction of 2D Poisson matrices.
n Matlab Python Python_vec Matlab/Python Matlab/Python_vec

100 1.73 0.0382 0.00426 45.53 406.1
300 145.98 0.3520 0.0317 414.72 4605.0
500 2318.51 0.9800 0.0864 2365.8 26834.6
1000 ∞ 4.02 0.333 ∞ ∞

Unfortunately, since Matlab does not explicitly support symmetric matrices, we cannot compare the
other functions. For information only, we compare the block version of the Python constructor with
the Kronecker-product version of the Matlab constructor. The results are in the next table.

20 Chapter 3. Low-Level Sparse Matrix Types

Pysparse Documentation, Release 1.0.2

Table 3.2: Matlab vs. Python: Construction of 2D Poisson matrices—Fastest methods.
n Matlab Python_vec Matlab/Python_vec

100 0.01912 0.0025 7.65
300 0.2152 0.0219 9.83
500 0.6271 0.0631 9.94
1000 2.318 0.232 9.99

3.5. Comparison with Matlab 21

Pysparse Documentation, Release 1.0.2

22 Chapter 3. Low-Level Sparse Matrix Types

CHAPTER

FOUR

PRECONDITIONERS

4.1 The precon Module

The precon module provides preconditioners, which can be used e.g.for the iterative methods implemented in the in
the itsolvers module or the JDSYM eigensolver (in the jdsym module).

In the Pysparse framework, any Python object that has the following properties can be used as a preconditioner:

• a shape attribute, which returns a 2-tuple describing the dimension of the preconditioner,

• a precon method, that accepts two vectors x and y, and applies the preconditioner to x and stores the result in
y. Both x and y are double precision, rank-1 NumPy arrays of appropriate size.

The precon module implements two new object types jacobi and ssor, representing Jacobi and SSOR precon-
ditioners.

4.1.1 precon Module Functions

precon.jacobi(A, omega=1.0, steps=1)
Creates a jacobi object, representing the Jacobi preconditioner. The parameter A is the system matrix used
for the Jacobi iteration. The matrix needs to be subscriptable using two-dimensional indices, so e.g.an ll_mat
object would work. The optional parameter ω, which defaults to 1.0, is the weight parameter. The optional
steps parameter (defaults to 1) specifies the number of iteration steps.

precon.ssor(A, omega=1.0, steps=1)
Creates a ssor object, representing the SSOR preconditioner. The parameter A is the system matrix used for
the SSOR iteration. The matrix A has to be an object of type sss_mat. The optional parameter ω, which
defaults to 1.0, is the relaxation parameter. The optional steps parameter (defaults to 1) specifies the number
of iteration steps.

4.1.2 jacobi and ssor Objects

Both jacobi and ssor objects provide the shape attribute and the precon method, that every preconditioner
object in the PySparse framework must implement. Apart from that, there is nothing noteworthy to say about these
objects.

4.1.3 Example: Diagonal Preconditioner

The diagonal preconditioner is just a special case of the Jacobi preconditioner, with omega=1.0 and steps=1,
which happen to be the default values of these parameters.

23

Pysparse Documentation, Release 1.0.2

It is however easy to implement the diagonal preconditioner using a Python class:

class diag_prec:
def __init__(self, A):

self.shape = A.shape
n = self.shape[0]
self.dinv = numpy.empty(n)
for i in xrange(n):

self.dinv[i] = 1.0 / A[i,i]
def precon(self, x, y):

numpy.multiply(x, self.dinv, y)

So:

>>> D1 = precon.jacobi(A, 1.0, 1)

and:

>>> D2 = diag_prec(A)

yield functionally equivalent preconditioners. D1 is probably faster than D2, because it is fully implemented in C.

24 Chapter 4. Preconditioners

CHAPTER

FIVE

ITERATIVE SOLVERS

5.1 The itsolvers Module

The itsolvers module provides a set of iterative methods for solving linear systems of equations.

The iterative methods are callable like ordinary Python functions. All these functions expect the same parameter list,
and all function return values also follow a common standard.

Any user-defined iterative solvers should also follow these conventions, since other PySparse modules rely on them
(e.g. the jdsym module; see Eigenvalue Solver).

Let’s illustrate the calling conventions, using the PCG method.

info, iter, relres = pcg(A, b, x, tol, maxit[, K])
Solve a linear system A x = b with the preconditioned conjugate gradient algorithm. Overwrite x with the
best estimate of the solution found.

Parameters

A The coefficient matrix of the linear system of equations. A must provide the shape
attribute and the matvec and matvec_transp methods for multiplying with a
vector.

b The right-hand-side of the linear system as a rank-1 NumPy array.

x A rank-1 NumPy array. Upon entry, x holds the initial guess. On exit, x holds an
approximate solution of the linear system.

tol A float value representing the requested error tolerance. The exact meaning of this
parameter depends on the actual iterative solver.

maxit An integer that specifies the maximum number of iterations to be executed.

K A preconditioner object that supplies the shape attribute and the precon method.

Returns

info an integer that contains the exit status of the iterative solver. info >= 0 indi-
cates, that x holds an acceptable solution, and info < 0 indicates an error condi-
tion. info has one of the following values:

+2. iteration converged, residual is as small as seems reasonable on this machine,

+1. iteration converged, b = 0, so the exact solution is x = 0.

+0. iteration converged, relative error appears to be less than tol.

-1. iteration did not converge, maximum number of iterations was reached.

25

Pysparse Documentation, Release 1.0.2

-2. iteration did not converge, the system involving the preconditioner was ill-
conditioned.

-3. iteration did not converge, an inner product of the form xT K−1x was not positive,
so the preconditioning matrix K does not appear to be positive definite.

-4. iteration did not converge, the matrix A appears to be very ill-conditioned.

-5. iteration did not converge, the method stagnated.

-6. iteration did not converge, a scalar quantity became too small or too large to
continue computing.

iter the number of iterations performed.

relres the relative residual at the approximate solution computed by the iterative
method. What this actually is depends on the actual iterative method used.

The iterative solvers may accept additional parameters, which are passed as keyword arguments.

Note that not all iterative solvers check for all above error conditions.

5.1.1 itsolvers Module Functions

The module functions defined in the precon module implement various iterative methods (PCG, MINRES, QMRS
and CGS). The parameters and return values conform to the conventions described above.

info, iter, relres = pcg(A, b, x, tol, maxit[, K])
Implements the Preconditioned Conjugate Gradient method.

info, iter, relres = minres(A, b, x, tol, maxit[, K])
Implements the MINRES method.

info, iter, relres = qmrs(A, b, x, tol, maxit[, K])
Implements the QMRS method.

info, iter, relres = cgs(A, b, x, tol, maxit[, K])
Implements the CGS method.

5.1.2 Example: Solving the Poisson System

Let’s solve the Poisson system

Lx = 1, (5.1)

using the PCG method. L is the 2D Poisson matrix, introduced in Low-Level Sparse Matrix Types, and 1 is a vector
with all entries equal to one.

The Python solution for this task looks as follows:

from pysparse.sparse import spmatrix
from pysparse.precon import precon
from pysparse.itsolvers import krylov
import numpy
n = 300
L = poisson2d_sym_blk(n)
b = numpy.ones(n*n)
x = numpy.empty(n*n)
info, iter, relres = krylov.pcg(L.to_sss(), b, x, 1e-12, 2000)

26 Chapter 5. Iterative Solvers

Pysparse Documentation, Release 1.0.2

The code makes use of the Python function poisson2d_sym_blk, which was defined in Low-Level Sparse Matrix
Types.

Incorporating e.g. a SSOR preconditioner is straightforward:

from pysparse.sparse import spmatrix
from pysparse.precon import precon
from pysparse.itsolver import krylov
import numpy
n = 300
L = poisson2d_sym_blk(n)
b = numpy.ones(n*n)
x = numpy.empty(n*n)
S = L.to_sss()
Kssor = precon.ssor(S)
info, iter, relres = krylov.pcg(S, b, x, 1e-12, 2000, Kssor)

The Matlab solution (without preconditioner) may look as follows:

n = 300;
L = poisson2d_kron(n);
[x,flag,relres,iter] = pcg(L, ones(n*n,1), 1e-12, 2000, ...

[], [], zeros(n*n,1));

5.1.3 Performance comparison with Matlab and native C

Todo

Update the timings below.

Warning: The timings below are Roman’s old benchmarks. I don’t know on which machine they were run. We
should update them.

To evaluate the performance of the Python implementation we solve the 2D Poisson system (5.1) using the PCG
method. The Python timings are compared with results of a Matlab and a native C implementation.

The native C and the Python implementation use the same core algorithms for PCG method and
the matrix-vector multiplication. On the other hand, C reads the matrix from an external file in-
stead of building it on the fly. In contrast to the Python implementation, the native C version
does not suffer from the overhead generated by the runtime argument parsing and calling overhead.

Table 5.1: Performance comparison of Python, Matlab and native C implementations to solve the linear system (1)
without preconditioning. The execution times are given in seconds. Assembly is the time for constructing the matrix
(or reading it from a file in the case of native C). Solve is the time spent in the PCG solver. Total is the sum of
Assembly and Solve. Matlab version 6.0 Release 12 was used for these timings.

Function Size Assembly Solve Total
Python n=100 0.03 1.12 1.15

n=300 0.21 49.65 49.86
n=500 0.62 299.39 300.01

Native C n=100 0.30 0.96 1.26
n=300 3.14 48.38 51.52
n=500 10.86 288.67 299.53

Matlab n=100 0.21 8.85 9.06
n=300 2.05 387.26 389.31
n=500 6.23 1905.67 1911.8

5.1. The itsolvers Module 27

Pysparse Documentation, Release 1.0.2

This table shows the execution times for the Python, the Matlab and the native C implementation for solving the linear
system (5.1). Matlab is not only slower when building the matrix, also the matrix-vector multiplication seems to be
implemented inefficiently. Considering Solve, the performance of Python and native C is comparable. The Python
overhead is under a factor of 4.

28 Chapter 5. Iterative Solvers

CHAPTER

SIX

DIRECT SOLVERS

6.1 The Low-Level C Modules

6.1.1 The superlu Module

The superlu module interfaces the SuperLU library to make it usable by Python code. SuperLU is a software
package written in C, that is able to compute an LU-factorisation of a general non-symmetric sparse matrix with
partial pivoting.

The superlu module exports a single function, called factorize.

superlu.factorize(A, **kwargs)
The factorize function computes an LU-factorisation of the matrix A.

Parameters

A A csr_mat object that represents the matrix to be factorized.

Keywords

diag_pivot_thresh the partial pivoting threshold, in the interval
[0, 1]. diag_pivot_thresh=0 corresponds to no pivoting.
diag_pivot_thresh=1 corresponds to partial pivoting (default: 1.0).

drop_tol the drop tolerance, in the interval [0, 1]. drop_tol=0 corresponds to the
exact factorization (default: 0.0).

relax the degree of relaxing supernodes (default: 1).

panel_size the maximum number of columns that form a panel (default: 10).

permc_spec the matrix ordering used to control sparsity of the factors:

0. natural ordering

1. MMD applied to the structure of AT A

2. MMD applied to the structure of AT + A

3. COLAMD, approximate minimum degree column ordering

(default: 2).

Return type an object of type superlu_context. This object encapsulates the L and U factors
of A (see below).

Note: The drop_tol has no effect in SuperLU version 2.0 and below. In SuperLU version 3.0 and above, the
default value of permc_spec is 3.

29

Pysparse Documentation, Release 1.0.2

superlu_context Object Attributes and Methods

class superlu.superlu_context
An abstract encapsulation of the LU factorization of a matrix by SuperLU.

shape
A 2-tuple describing the dimension of the matrix factorized. It is equal to A.shape.

nnz
The nnz attribute holds the total number of nonzero entries stored in both the L and U factors.

solve(b, x, trans)
The solve method accepts two rank-1 NumPy arrays b and x of appropriate size and assigns the solution
of the linear system Ax = b to x. If the optional parameter trans is set to the string ’T’, the transposed
system AT x = b is solved instead.

Example: Solving a 2D Poisson System with SuperLU

Let’s now solve the 2D Poisson system Ax = 1 using an LU factorization. Here, A is the 2D Poisson matrix,
introduced in Low-Level Sparse Matrix Types and 1 is a vector with all entries equal to one.

The Python solution for this task looks as follows:

from pysparse.sparse import spmatrix
from pysparse.direct import superlu
import numpy
n = 100
A = poisson2d_sym_blk(n)
b = numpy.ones(n*n)
x = numpy.empty(n*n)
LU = superlu.factorize(A.to_csr(), diag_pivot_thresh=0.0)
LU.solve(b, x)

The code makes use of the Python function poisson2d_sym_blk(), which was defined in Low-Level Sparse
Matrix Types.

Example: An Incomplete LU Factorization Preconditioner

Warning: SuperLU 3.0 and above accept a drop_tol argument although the source files mention that incom-
plete factorization is not implemented. Therefore, changing drop_tol has no effect on the factorization at the
moment and we must wait for it to be implemented. In the meantime, we can still demonstrate in this section how
to implement an incomplete factorization preconditioner in Pysparse, even though in the present situation, it will
be a complete factorization preconditioner!

Versions of SuperLU above 3.0 accept the drop_tol argument that allows the computation of incomplete factors,
realizing a tradeoff between computational cost and factor density. The following example show how to use an
incomplete LU factorization as a preconditioner in any of the iterative methods of the itsolvers module:

from pysparse.tools import poisson
from pysparse.direct import superlu
from pysparse.itsolvers import krylov
import numpy

class ILU_Precon:
"""

30 Chapter 6. Direct Solvers

Pysparse Documentation, Release 1.0.2

A preconditioner based on an
incomplete LU factorization.

Input: A matrix in CSR format.
Keyword argument: Drop tolerance.
"""
def __init__(self, A, drop=1.0e-3):

self.LU = superlu.factorize(A, drop_tol=drop)
self.shape = self.LU.shape

def precon(self, x, y):
self.LU.solve(x,y)

n = 300
A = poisson.poisson2d_sym_blk(n).to_csr() # Convert right away
b = numpy.ones(n*n)
x = numpy.empty(n*n)

K = ILU_Precon(A)
info, niter, relres = krylov.pcg(A, b, x, 1e-12, 2000, K)

Note: Note that the 2D Poisson matrix is symmetric and positive definite, although barely. Indeed its smallest
eigenvalue is 2(1− cos(π/(n+1))) ≈ (π/(n+1))2. Therefore, a Cholesky factorization would be more appropriate.
In the future, we intend to interface the Cholmod library.

6.1.2 The umfpack Module

The umfpack module interfaces the UMFPACK library to make it usable by Python code. UMFPACK is a software
package written in C, that is able to compute an LU factorization of a general non-symmetric sparse matrix with partial
pivoting.

Note: The major difference with the superlu modules is that umfpack receives a matrix in ll_mat format
instead of csr_mat format.

The umfpack module exports a single function, called factorize.

superlu.factorize(A, **kwargs)
The factorize function computes an LU-factorisation of the matrix A.

Parameters

A A ll_mat object that represents the matrix to be factorized.

Keywords

strategy Pivoting strategy. Possible values are:

• “UMFPACK_STRATEGY_AUTO”

• “UMFPACK_STRATEGY_UNSYMMETRIC”

• “UMFPACK_STRATEGY_SYMMETRIC”

• “UMFPACK_STRATEGY_2BY2”

tol2by2 Tolerance for the 2-by-2 strategy.

scale Scaling used during factorization. Possible values are:

• “UMFPACK_SCALE_NONE”

6.1. The Low-Level C Modules 31

http://www.cise.ufl.edu/research/sparse/cholmod/

Pysparse Documentation, Release 1.0.2

• “UMFPACK_SCALE_SUM”

• “UMFPACK_SCALE_MAX”

tolpivot Relative pivot tolerance for threshold partial pivoting with row interchanges.

tolsympivot If diagonal pivoting is attempted, this parameter controls when the diago-
nal is selected in a given pivot column.

Return type an object of type umfpack_context. This object encapsulates the L and U factors
of A (see below).

umfpack_context Object Attributes and Methods

class superlu.umfpack_context
An abstract encapsulation of the LU factorization of a matrix by UMFPACK.

shape
A 2-tuple describing the dimension of the matrix factorized. It is equal to A.shape.

nnz
The nnz attribute holds the total number of nonzero entries stored in the input matrix. It is equal to
A.nnz. To obtain the number of nonzero element in the factors, see lunz().

solve(b, x, method, irsteps)

Parameters

b The right-hand side of the system Ax = b as a Numpy array.

x A Numpy array to hold the solution of Ax = b.

method (optional) Different systems may be solved by setting the method argument
appropriately. See the documentation of the pysparseUmfpackSolver below
for more details.

irsteps (optional) The number of iterative refinement steps to perform.

lu()
Return the factors, permutation and scaling information. See the documentation of the
pysparseUmfpackSolver below for more details.

lunz()
Return the number of nonzeros in factors, i.e., in L + U.

Example: Solving a 2D Poisson System with UMFPACK

We now solve again the 2D Poisson system Ax = 1 using an LU factorization. Here, A is the 2D Poisson matrix,
introduced in Low-Level Sparse Matrix Types and 1 is a vector with all entries equal to one.

The Python solution using UMFPACK looks as follows:

from pysparse.sparse import spmatrix
from pysparse.direct import umfpack
import numpy
n = 100
A = poisson2d_sym_blk(n)
b = numpy.ones(n*n)
x = numpy.empty(n*n)
LU = umfpack.factorize(A, strategy="UMFPACK_STRATEGY_SYMMETRIC")
LU.solve(b, x)

32 Chapter 6. Direct Solvers

Pysparse Documentation, Release 1.0.2

The code makes use of the Python function poisson2d_sym_blk(), which was defined in Low-Level Sparse
Matrix Types.

6.2 Higher-Level Python Interfaces

This section anticipates on Higher-Level Sparse Matrix Classes and shows usage of higher-level interfaces to the LU
factorization packages.

6.2.1 The Abstract directSolver Module

A framework for solving sparse linear systems of equations using a direct factorization.

class pysparse.direct.directSolver.PysparseDirectSolver(A, **kwargs)
PysparseDirectSolver is a generic class and should be subclassed.

solve(b, **kwargs)

6.2.2 The pysparseSuperLU Module: A Higher-Level SuperLU Interface

A framework for solving sparse linear systems of equations using an LU factorization, by means of the supernodal
sparse LU factorization package SuperLU ([DEGLL99], [DGL99], [LD03]).

This package is appropriate for factorizing sparse square unsymmetric or rectangular matrices.

See [SLU] for more information.

References:

class pysparse.direct.pysparseSuperLU.PysparseSuperLUSolver(A, **kwargs)
Bases: pysparse.direct.directSolver.PysparseDirectSolver

PysparseSuperLUSolver is a wrapper class around the SuperLu library for the factorization of full-rank n-by-m
matrices. Only matrices with real coefficients are currently supported.

Parameters

A The matrix to be factorized, supplied as a PysparseMatrix instance.

Keywords

symmetric a boolean indicating that the user wishes to use symmetric mode. In sym-
metric mode, permc_spec=2 must be chosen and diag_pivot_thresh must
be small, e.g., 0.0 or 0.1. Since the value of diag_pivot_thresh is up to the
user, setting symmetric to True does not automatically set permc_spec and
diag_pivot_thresh to appropriate values.

diag_pivot_thresh a float value between 0 and 1 representing the threshold for partial
pivoting (0 = no pivoting, 1 = always perform partial pivoting). Default: 1.0.

drop_tol the value of a drop tolerance, between 0 and 1, if an incomplete factorization
is desired (0 = exact factorization). This keyword does not exist if using SuperLU
version 2.0 and below. In more recent version of SuperLU, the keyword is accepted
but has no effect. Default: 0.0

relax an integer controling the degree of relaxing supernodes. Default: 1.

panel_size an integer specifying the maximum number of columns to form a panel.
Default: 10.

6.2. Higher-Level Python Interfaces 33

Pysparse Documentation, Release 1.0.2

permc_spec an integer specifying the ordering strategy used during the factorization.

0. natural ordering,

1. MMD applied to the structure of AT A

2. MMD applied to the structure of AT + A

3. COLAMD.

Default: 2.

LU
A superlu_context object encapsulating the factorization.

sol
The solution of the linear system after a call to solve().

factorizationTime
The CPU time to perform the factorization.

solutionTime
The CPU time to perform the forward and backward sweeps.

lunz
The number of nonzero elements in the factors L and U together after a call to fetch_lunz().

fetch_factors()
Not yet available.

fetch_lunz()
Retrieve the number of nonzeros in the factors L and U together. The result is stored in the member lunz
of the class instance.

solve(rhs, transpose=False)
Solve the linear system A x = rhs, where A is the input matrix and rhs is a Numpy vector of appro-
priate dimension. The result is placed in the sol member of the class instance.

If the optional argument transpose is True, the transpose system A^T x = rhs is solved.

6.2.3 Example: The 2D Poisson System with SuperLU

The solution of a 2D Poisson system with PysparseSuperLUSolver may look like this:

from pysparse.sparse.pysparseMatrix import PysparseMatrix
from pysparse.direct.pysparseSuperLU import PysparseSuperLUSolver
from pysparse.tools.poisson_vec import poisson2d_sym_blk_vec
from numpy import ones
from numpy.linalg import norm

n = 200
A = PysparseMatrix(matrix=poisson2d_sym_blk_vec(n))
x_exact = ones(n*n)/n
b = A * x_exact
LU = PysparseSuperLUSolver(A)
LU.solve(b)
print ’Factorization time: ’, LU.factorizationTime
print ’Solution time: ’, LU.solutionTime
print ’Error: ’, norm(LU.sol - x_exact)/norm(x_exact)

The above script produces the output:

34 Chapter 6. Direct Solvers

Pysparse Documentation, Release 1.0.2

Factorization time: 0.494116
Solution time: 0.017096
Error: 2.099685128150953e-14

Note that this example uses the vectorized Poisson constructors of Low-Level Sparse Matrix Types.

6.2.4 The pysparseUmfpack Module: A Higher-Level UMFPACK Interface

A framework for solving sparse linear systems of equations using an LU factorization, by means of the unsymmetric
multifrontal sparse LU factorization package UMFPACK ([D04a], [D04b], [DD99], [DD97]).

This package is appropriate for factorizing sparse square unsymmetric or rectangular matrices.

See [UMF] for more information.

References:

class pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver(A, **kwargs)
Bases: pysparse.direct.directSolver.PysparseDirectSolver

PysparseUmfpackSolver is a wrapper class around the UMFPACK library for the factorization of full-rank n-
by-m matrices. Only matrices with real coefficients are currently supported.

Parameters

A A PysparseMatrix instance representing the matrix to be factorized.

Keywords

strategy string that specifies what kind of ordering and pivoting strategy UMFPACK
should use. Valid values are ‘auto’, ‘unsymmetric’, ‘symmetric’ and ‘2by2’. Default:
‘auto’

tol2by2 tolerance for the 2 by 2 strategy. Default: 0.1

scale string that specifies the scaling UMFPACK should use. Valid values are ‘none’,
‘sum’, and ‘max’. Default: ‘sum’.

tolpivot relative pivot tolerance for threshold partial pivoting with row interchanges.
Default: 0.1

tolsympivot if diagonal pivoting is attempted, this parameter is used to control when
the diagonal is selected in a given pivot column. Default: 0.0

LU
An umfpack_context object encapsulating the factorization.

sol
The solution of the linear system after a call to solve().

L
The L factor of the input matrix.

U
The U factor of the input matrix.

P
The row permutation used for the factorization.

Q
The column permutation used for the factorization.

6.2. Higher-Level Python Interfaces 35

Pysparse Documentation, Release 1.0.2

R
The row scaling used during the factorization. See the documentation of fetch_factors().

factorizationTime
The CPU time to perform the factorization.

solutionTime
The CPU time to perform the forward and backward sweeps.

do_recip
Nature of the row scaling. See fetch_factors().

lnz
The number of nonzero elements in the factor L.

unz
The number of nonzero elements in the factor U from which the diagonal was removed.

nz_udiag
The number of nonzero elements on the diagonal of the factor U.

fetch_factors()
Retrieve the L and U factors of the input matrix along with the permutation matrices P and Q and the row
scaling matrix R such that

PRAQ = LU.

The matrices P, R and Q are stored as Numpy arrays. L and U are stored as PysparseMatrix instances and
are lower triangular and upper triangular, respectively.

R is a row-scaling diagonal matrix such that

•the i-th row of A has been divided by R[i] if do_recip = True,

•the i-th row of A has been multiplied by R[i] if do_recip = False.

fetch_lunz()
Retrieve the number of nonzeros in the factors. The results are stored in the members lnz, unz and
nz_udiag of the class instance.

solve(rhs, **kwargs)
Solve the linear system A x = rhs. The result is placed in the sol member of the class instance.

Parameters

rhs a Numpy vector of appropriate dimension.

Keywords

method specifies the type of system being solved:

"UMFPACK_A" Ax = b (default)
"UMFPACK_At" ATx = b
"UMFPACK_Pt_L" PT Lx = b
"UMFPACK_L" Lx = b
"UMFPACK_Lt_P" LT Px = b
"UMFPACK_Lt" LTx = b
"UMFPACK_U_Qt" UQTx = b
"UMFPACK_U" Ux = b
"UMFPACK_Q_Ut" QUTx = b
"UMFPACK_Ut" UTx = b

irsteps number of iterative refinement steps to attempt. Default: 2

36 Chapter 6. Direct Solvers

Pysparse Documentation, Release 1.0.2

6.2.5 Example: The 2D Poisson System with UMFPACK

The solution of a 2D Poisson system with PysparseUmfpackSolver may look like this:

from pysparse.tools.poisson_vec import poisson2d_sym_blk_vec
from numpy import ones
from numpy.linalg import norm

n = 200
A = PysparseMatrix(matrix=poisson2d_sym_blk_vec(n))
x_exact = ones(n*n)/n
b = A * x_exact
LU = PysparseUmfpackSolver(A)
LU.solve(b)
print ’Factorization time: ’, LU.factorizationTime
print ’Solution time: ’, LU.solutionTime
print ’Error: ’, norm(LU.sol - x_exact)/norm(x_exact)

This script produces the output:

Factorization time: 0.520043
Solution time: 0.031086
Error: 1.10998989668e-15

6.2. Higher-Level Python Interfaces 37

Pysparse Documentation, Release 1.0.2

38 Chapter 6. Direct Solvers

CHAPTER

SEVEN

EIGENVALUE SOLVER

7.1 The jdsym Module

The jdsym module provides an implementation of the JDSYM algorithm, that is conveniently callable from Python.
JDSYM is an eigenvalue solver to compute eigenpairs of a generalised matrix eigenvalue problem of the form

Ax = λMx (7.1)

or a standard eigenvalue problem of the form

Ax = λx (7.2)

where A is symmetric and M is symmetric positive definite.

The module exports a single function:

jdsym.jdsym(A, M, K, kmax, tau, jdtol, itmax, linsolver, **kwargs)
Implements Jacobi-Davidson iterative method to identify a given number of eigenvalues near a target value.

Parameters

A the matrix A in (7.1) or (7.2). A must provide the shape attribute and the matvec
and matvec_transp methods.

M the matrix M in (7.1). M must provide the shape attribute and the matvec and
matvec_transpmethods. If the standard eigenvalue problem (7.2) is to be solved,
M should be set to None.

K a preconditioner object that supplies the shape attribute and the precon method.
If no preconditioner is to used, then the None value can be passed for this parameter.

kmax the number of eigenpairs to be computed.

tau the target value τ . Eigenvalues in the vicinity of τ will be computed.

jdtol the convergence tolerance for eigenpairs (λ,x). The converged eigenpairs have a
residual ‖Ax− λMx‖2 less than jdtol.

itmax an integer that specifies the maximum number of Jacobi-Davidson iterations to
perform.

linsolver a function that implements an iterative method for solving linear systems
of equations. The function linsolver is required to conform to the standards
mentioned in Iterative Solvers.

39

Pysparse Documentation, Release 1.0.2

Keywords

jmax the maximum dimension of the search subspace (default: 25).

jmin the dimension of the search subspace after a restart (default: 10).

blksize the block size used in the JDSYM algorithm (default: 1).

blkwise is an integer that affects the convergence criterion if blksize is larger than
1 (default: 0).

V0 a NumPy array of rank one or two. It specifies the initial search subspace (default:
a randomly generated initial search subspace).

optype is an integer specifying the operator type used in the correction equation. If
optype=1, the non-symmetric version is used. If optype=2, the symmetric ver-
sion is used (default: 2).

linitmax the maximum number of steps taken in the inner iteration (iterative linear
solver) (default: 200).

eps_tr the tracking parameter (default: 1.0e-3).

toldecay is a float value that influences the dynamic adaptation of the stopping criterion
of the inner iteration (default: 1.5).

clvl verbosity level. The higher the clvl parameter, the more output is sent to the
standard output. clvl=0 produces no output (default: 0).

strategy is an integer specifying shifting and sorting strategy of JDSYM.
strategy=0 enables the default JDSYM algorithm. strategy=1 enables
JDSYM to avoid convergence to eigenvalues smaller than τ (default: 0).

projector is used to keep the search subspace and the eigenvectors in a certain sub-
space. The parameter projector can be any Python object that has a shape
attribute and a project method. The project method takes a vector (a rank-1
NumPy array) as its sole argument and projects that vector in-place. This parameter
can be used to implement the DIRPROJ and SAUG methods (default: no projection).

Returns

kconv the number of converged eigenpairs.

lambda a rank-1 NumPy array containing the converged eigenvalues.

Q a rank-2 NumPy array containing the converged eigenvectors. The i-th eigenvector
is accessed by Q[:,i].

it an integer indicating the number of Jacobi-Davidson steps (outer iteration steps) per-
formed.

7.1.1 Example: Maxwell Problem

Todo

Update the timings below.

Warning: The timings below are Roman’s old benchmarks. We should run them again.

The following code illustrates the use of the jdsym module. Two matrices A and M are read from files. A Jacobi
preconditioner from A − τM is built. Then the JDSYM eigensolver is called, calculating 5 eigenvalues near 25.0

40 Chapter 7. Eigenvalue Solver

Pysparse Documentation, Release 1.0.2

and the associated eigenvalues to an accuracy of 10−10. We set strategy=1 to avoid convergence to the high-
dimensional null space of (A, M):

from pysparse.sparse import spmatrix
from pysparse.itsolvers import krylov
from pysparse.eig import jdsym
from pysparse.precon import precon

A = spmatrix.ll_mat_from_mtx(’edge6x3x5_A.mtx’)
M = spmatrix.ll_mat_from_mtx(’edge6x3x5_B.mtx’)
tau = 25.0

Atau = A.copy()
Atau.shift(-tau, M)
K = precon.jacobi(Atau)

A = A.to_sss(); M = M.to_sss()
k_conv, lmbd, Q, it = jdsym.jdsym(A, M, K, 5, tau,

1e-10, 150, krylov.qmrs,
jmin=5, jmax=10, clvl=1, strategy=1)

This code takes 33.71 seconds to compute the five eigenpairs. A native C version, using the same computational
kernels, takes 35.64 for the same task. We expected the Python version to be slower due to the overhead generated
when calling the matrix-vector multiplication and the preconditioner, but surprisingly the Python code was even a bit
faster. New in version 1.0.1.

7.1. The jdsym Module 41

Pysparse Documentation, Release 1.0.2

42 Chapter 7. Eigenvalue Solver

CHAPTER

EIGHT

HIGHER-LEVEL SPARSE MATRIX
CLASSES

8.1 The pysparseMatrix module

This module defines a few convenience classes as wrappers around ll_mat objects. Being proper Python classes, they
are subclassable. PysparseMatrix objects have hooks for all methods of ll_mat objects.

class pysparse.sparse.pysparseMatrix.PysparseMatrix(**kwargs)
Bases: pysparse.sparse.sparseMatrix.SparseMatrix

A PysparseMatrix is a class wrapper for the pysparse spmatrix sparse matrix type. This class facilitates matrix
populating and allows intuitive operations on sparse matrices and vectors.

Keywords

nrow The number of rows of the matrix

ncol The number of columns of the matrix

size The common number of rows and columns, for a square matrix

bandwidth The bandwidth (if creating a band matrix)

matrix The starting spmatrix if there is one

sizeHint A guess on the number of nonzero elements of the matrix

symmetric A boolean indicating whether the matrix is symmetric.

addAt(vector, id1, id2)
Add elements of vector to the positions in the matrix corresponding to (id1,id2)

>>> L = PysparseMatrix(size = 3)
>>> L.put([3.,10.,numpy.pi,2.5], [0,0,1,2], [2,1,1,0])
>>> L.addAt((1.73,2.2,8.4,3.9,1.23), (1,2,0,0,1), (2,2,0,0,2))
>>> print L
12.300000 10.000000 3.000000

--- 3.141593 2.960000
2.500000 --- 2.200000

addAtDiagonal(vector)
Add the components of vector vector to the diagonal elements of the matrix.

col_scale(v)
Apply in-place column scaling. Each column is scaled by the corresponding component of v, i.e., A[:,i]
*= v[i].

43

Pysparse Documentation, Release 1.0.2

copy()
Returns a (deep) copy of a sparse matrix

exportMmf(filename)
Exports the matrix to a Matrix Market file of the given filename.

find()
Returns three Numpy arrays to describe the sparsity pattern of self in so-called coordinate (or triplet)
format:

>>> L = PysparseMatrix(size = 3)
>>> L.put([3.,10.,numpy.pi,2.5], [0,0,1,2], [2,1,1,0])
>>> (val,irow,jcol) = L.find()
>>> val
array([10. , 3. , 3.14159265, 2.5])
>>> irow
array([0, 0, 1, 2])
>>> jcol
array([1, 2, 1, 0])

getMatrix()
Returns the underlying ll_mat sparse matrix of self

getNnz()
Returns the number of nonzero elements of self

getNumpyArray()
Convert a sparse matrix to a dense Numpy matrix.

getShape()
Returns the shape (nrow,ncol) of a sparse matrix

isSymmetric()
Returns True is self is a symmetric matrix or False otherwise

matvec(x)
This method is required for scipy solvers.

put(value, id1=None, id2=None)
Put elements of value at positions of the matrix corresponding to (id1, id2)

>>> L = PysparseMatrix(size = 3)
>>> L.put([3.,10.,numpy.pi,2.5], [0,0,1,2], [2,1,1,0])
>>> print L

--- 10.000000 3.000000
--- 3.141593 ---

2.500000 --- ---
>>> L.put(2*numpy.pi, range(3), range(3))
>>> print L
6.283185 10.000000 3.000000

--- 6.283185 ---
2.500000 --- 6.283185

If value is a scalar, it has the same effect as the vector of appropriate length with all values equal to
value. If id1 is omitted, it is replaced with range(nrow). If id2 is omitted, it is replaced with
range(ncol).

putDiagonal(vector)
Put elements of vector along diagonal of matrix

44 Chapter 8. Higher-Level Sparse Matrix Classes

Pysparse Documentation, Release 1.0.2

>>> L = PysparseMatrix(size = 3)
>>> L.putDiagonal([3.,10.,numpy.pi])
>>> print L
3.000000 --- ---

--- 10.000000 ---
--- --- 3.141593

>>> L.putDiagonal([10.,3.])
>>> print L
10.000000 --- ---

--- 3.000000 ---
--- --- 3.141593

>>> L.putDiagonal(2.7182)
>>> print L
2.718200 --- ---

--- 2.718200 ---
--- --- 2.718200

row_scale(v)
Apply in-place row scaling. Each row is scaled by the corresponding component of v, i.e., A[i,:] *=
v[i].

take(id1=None, id2=None)
Extract elements at positions (irow[i], jcol[i]) and place them in the array val. In other words:

for i in range(len(val)): val[i] = A[irow[i],jcol[i]]

takeDiagonal()
Extract the diagonal of a matrix and place it in a Numpy array.

class pysparse.sparse.pysparseMatrix.PysparseIdentityMatrix(size)
Bases: pysparse.sparse.pysparseMatrix.PysparseMatrix

Represents a sparse identity matrix for pysparse.

>>> print PysparseIdentityMatrix(size = 3)
1.000000 --- ---

--- 1.000000 ---
--- --- 1.000000

class pysparse.sparse.pysparseMatrix.PysparseSpDiagsMatrix(size, vals, pos, **kwargs)
Bases: pysparse.sparse.pysparseMatrix.PysparseMatrix

Represents a banded matrix with specified diagonals.

Example: Create a tridiagonal matrix with 1’s on the diagonal, 2’s above the diagonal, and -2’s below the
diagonal.

>>> from numpy import ones
>>> e = ones(5)
>>> print PysparseSpDiagsMatrix(size=5, vals=(-2*e,e,2*e), pos=(-1,0,1))
1.000000 2.000000 --- --- ---

-2.000000 1.000000 2.000000 --- ---
--- -2.000000 1.000000 2.000000 ---
--- --- -2.000000 1.000000 2.000000
--- --- --- -2.000000 1.000000

Note that since the pos[k]-th diagonal has size-|pos[k]| elements, only that many first elements of vals[k] will
be inserted.

If the banded matrix is requested to be symmetric, elements above the main diagonal are not inserted.

8.1. The pysparseMatrix module 45

Pysparse Documentation, Release 1.0.2

8.1.1 Fancy Indexing

Fancy indexing carries over to PysparseMatrix objects and is used exactly in the same way as with ll_mat
objects. Refer to Section Low-Level Sparse Matrix Types for details.

46 Chapter 8. Higher-Level Sparse Matrix Classes

CHAPTER

NINE

OTHER SPARSE MATRIX PACKAGES
FOR PYTHON

• Scipy provides a sparse matrix module featuring several storage formats.

• CVXOPT is a package for convex optimization and allows creation and manipulation of sparse matrices in
compressed sparse row format.

47

http://www.scipy.org
http://abel.ee.ucla.edu/cvxopt

Pysparse Documentation, Release 1.0.2

48 Chapter 9. Other Sparse Matrix Packages for Python

CHAPTER

TEN

LICENSE

Copyright (c) 2001-2010, The PySparse Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the PySparse Project.

Parts of this documentation are scavenged from Roman Geus’ original Pysparse website.

Some pages of this documentation display equations via the jsMath package. They should look reason-
ably good with most setups but the best rendering is obtained by installing the TeX fonts. Please refer to
http://www.math.union.edu/~dpvc/jsMath/users/welcome.html.

49

http://pysparse.sf.net
http://www.math.union.edu/~dpvc/jsMath/welcome.html
http://www.math.union.edu/~dpvc/jsMath/users/welcome.html

Pysparse Documentation, Release 1.0.2

50 Chapter 10. License

CHAPTER

ELEVEN

TODO LIST

Todo

Update the timings below.

(The original entry is located in itsolvers.rst, line 162.)

Todo

Update the timings below.

(The original entry is located in jdsym.rst, line 106.)

51

Pysparse Documentation, Release 1.0.2

52 Chapter 11. TODO List

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

53

Pysparse Documentation, Release 1.0.2

54 Chapter 12. Indices and Tables

BIBLIOGRAPHY

[DEGLL99] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li and J. W. H. Liu, A supernodal approach to sparse
partial pivoting, SIAM Journal on Matrix Analysis and Applications 20(3), pp. 720-755, 1999.

[DGL99] J. W. Demmel, J. R. Gilbert and X. S. Li, An Asynchronous Parallel Supernodal Algorithm for Sparse
Gaussian Elimination, SIAM Journal on Matrix Analysis and Applications 20(4), pp. 915-952, 1999.

[LD03] X. S. Li and J. W. Demmel, SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver for Un-
symmetric Linear Systems, ACM Transactions on Mathematical Software 29(2), pp. 110-140, 2003.

[SLU] http://crd.lbl.gov/~xiaoye/SuperLU

[D04a] T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Transac-
tions on Mathematical Software, 30(2), pp. 165-195, 2004.

[D04b] T. A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method, ACM Transactions on
Mathematical Software, 30(2), pp. 196-199, 2004.

[DD99] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal method for unsymmetric sparse matrices, ACM
Transactions on Mathematical Software, 25(1), pp. 1-19, 1999.

[DD97] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM
Journal on Matrix Analysis and Applications, 18(1), pp. 140-158, 1997.

[UMF] http://www.cise.ufl.edu/research/sparse/umfpack

55

http://crd.lbl.gov/~xiaoye/SuperLU
http://www.cise.ufl.edu/research/sparse/umfpack

Pysparse Documentation, Release 1.0.2

56 Bibliography

PYTHON MODULE INDEX

i
itsolvers, 24

j
jdsym, 37

p
precon, 21
pysparse, 1
pysparse.direct.directSolver, 33
pysparse.direct.pysparseSuperLU, 33
pysparse.direct.pysparseUmfpack, 35
pysparse.sparse.pysparseMatrix, 43

s
spmatrix, 8
superlu, 28

57

Pysparse Documentation, Release 1.0.2

58 Python Module Index

INDEX

A
addAt() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 43
addAtDiagonal() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 43

C
col_scale() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 43
compress() (spmatrix.ll_mat method), 14
copy() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 43
copy() (spmatrix.ll_mat method), 13
csr_mat (class in spmatrix), 15

D
delete_cols() (spmatrix.ll_mat method), 15
delete_rowcols() (spmatrix.ll_mat method), 15
delete_rows() (spmatrix.ll_mat method), 15
do_recip (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 36
dot() (in module spmatrix), 9

E
export_mtx() (spmatrix.ll_mat method), 13
exportMmf() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 44

F
factorizationTime (pys-

parse.direct.pysparseSuperLU.PysparseSuperLUSolver
attribute), 34

factorizationTime (pys-
parse.direct.pysparseUmfpack.PysparseUmfpackSolver
attribute), 36

factorize() (in module superlu), 29, 31
fetch_factors() (pysparse.direct.pysparseSuperLU.PysparseSuperLUSolver

method), 34
fetch_factors() (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

method), 36

fetch_lunz() (pysparse.direct.pysparseSuperLU.PysparseSuperLUSolver
method), 34

fetch_lunz() (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver
method), 36

find() (pysparse.sparse.pysparseMatrix.PysparseMatrix
method), 44

find() (spmatrix.ll_mat method), 15

G
generalize() (spmatrix.ll_mat method), 14
getMatrix() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 44
getNnz() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 44
getNumpyArray() (pys-

parse.sparse.pysparseMatrix.PysparseMatrix
method), 44

getShape() (pysparse.sparse.pysparseMatrix.PysparseMatrix
method), 44

I
issym (spmatrix.ll_mat attribute), 13
isSymmetric() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 44
items() (spmatrix.ll_mat method), 14
itsolvers (module), 24

J
jacobi() (in module precon), 23
jdsym (module), 37
jdsym() (in module jdsym), 39

K
keys() (spmatrix.ll_mat method), 14

L
L (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 35
ll_mat (class in spmatrix), 12
ll_mat() (in module spmatrix), 9
ll_mat_from_mtx() (in module spmatrix), 9

59

Pysparse Documentation, Release 1.0.2

ll_mat_sym() (in module spmatrix), 9
lnz (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 36
LU (pysparse.direct.pysparseSuperLU.PysparseSuperLUSolver

attribute), 34
LU (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 35
lu() (superlu.umfpack_context method), 32
lunz (pysparse.direct.pysparseSuperLU.PysparseSuperLUSolver

attribute), 34
lunz() (superlu.umfpack_context method), 32

M
matrixmultiply() (in module spmatrix), 9
matvec() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 44
matvec() (spmatrix.ll_mat method), 13
matvec() (spmatrix.sss_mat method), 16
matvec_transp() (spmatrix.ll_mat method), 13
matvec_transp() (spmatrix.sss_mat method), 16

N
nnz (spmatrix.ll_mat attribute), 13
nnz (spmatrix.sss_mat attribute), 15
nnz (superlu.superlu_context attribute), 30
nnz (superlu.umfpack_context attribute), 32
norm() (spmatrix.ll_mat method), 14
nz_udiag (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 36

P
P (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 35
precon (module), 21
put() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 44
put() (spmatrix.ll_mat method), 15
putDiagonal() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 44
pysparse (module), 1
pysparse.direct.directSolver (module), 33
pysparse.direct.pysparseSuperLU (module), 33
pysparse.direct.pysparseUmfpack (module), 35
pysparse.sparse.pysparseMatrix (module), 43
PysparseDirectSolver (class in pys-

parse.direct.directSolver), 33
PysparseIdentityMatrix (class in pys-

parse.sparse.pysparseMatrix), 45
PysparseMatrix (class in pys-

parse.sparse.pysparseMatrix), 43
PysparseSpDiagsMatrix (class in pys-

parse.sparse.pysparseMatrix), 45
PysparseSuperLUSolver (class in pys-

parse.direct.pysparseSuperLU), 33

PysparseUmfpackSolver (class in pys-
parse.direct.pysparseUmfpack), 35

Q
Q (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 35

R
R (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 35
row_scale() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 45

S
scale() (spmatrix.ll_mat method), 14
shape (spmatrix.ll_mat attribute), 12
shape (spmatrix.sss_mat attribute), 15
shape (superlu.superlu_context attribute), 30
shape (superlu.umfpack_context attribute), 32
shift() (spmatrix.ll_mat method), 13
sol (pysparse.direct.pysparseSuperLU.PysparseSuperLUSolver

attribute), 34
sol (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 35
solutionTime (pysparse.direct.pysparseSuperLU.PysparseSuperLUSolver

attribute), 34
solutionTime (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 36
solve() (pysparse.direct.directSolver.PysparseDirectSolver

method), 33
solve() (pysparse.direct.pysparseSuperLU.PysparseSuperLUSolver

method), 34
solve() (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

method), 36
solve() (superlu.superlu_context method), 30
solve() (superlu.umfpack_context method), 32
spmatrix (module), 8
ssor() (in module precon), 23
sss_mat (class in spmatrix), 15
superlu (module), 28
superlu_context (class in superlu), 30

T
take() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 45
take() (spmatrix.ll_mat method), 15
takeDiagonal() (pysparse.sparse.pysparseMatrix.PysparseMatrix

method), 45
to_csr() (spmatrix.ll_mat method), 13
to_sss() (spmatrix.ll_mat method), 13

U
U (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 35

60 Index

Pysparse Documentation, Release 1.0.2

umfpack_context (class in superlu), 32
unz (pysparse.direct.pysparseUmfpack.PysparseUmfpackSolver

attribute), 36
update_add_at() (spmatrix.ll_mat method), 14
update_add_mask() (spmatrix.ll_mat method), 13
update_add_mask_sym() (spmatrix.ll_mat method), 14

V
values() (spmatrix.ll_mat method), 14

Index 61

	Introduction to Pysparse
	Module Overview
	Prerequisites
	Installing Pysparse
	Testing Pysparse
	Generating the Documentation

	Sparse Matrix Formats
	Linked-List Format
	Compressed Sparse Row Format
	Sparse Skyline Format

	Low-Level Sparse Matrix Types
	The spmatrix Module
	Example: 2D-Poisson matrix
	Vectorization
	Matlab Implementation
	Comparison with Matlab

	Preconditioners
	The precon Module

	Iterative Solvers
	The itsolvers Module

	Direct Solvers
	The Low-Level C Modules
	Higher-Level Python Interfaces

	Eigenvalue Solver
	The jdsym Module

	Higher-Level Sparse Matrix Classes
	The pysparseMatrix module

	Other Sparse Matrix Packages for Python
	License
	TODO List
	Indices and Tables
	Bibliography
	Python Module Index
	Index

